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Abstract
Computer simulations are used to investigate the stability of typical dislocations in uranium
dioxide. We explain in detail the methods used to produce the dislocation configurations and
calculate the line energy and Peierls barrier for pure edge and screw dislocations with the
shortest Burgers vector 1

2 〈110〉. The easiest slip system is found to be the {100}〈110〉 system for
stoichiometric UO2, in agreement with experimental observations. We also examine the
different strain fields associated with these line defects and the close agreement between the
strain field predicted by atomic scale models and the application of elastic theory. Molecular
dynamics simulations are used to investigate the processes of slip that may occur for the three
different edge dislocation geometries and nudged elastic band calculations are used to establish
a value for the Peierls barrier, showing the possible utility of the method in investigating both
thermodynamic average behaviour and dynamic processes such as creep and plastic
deformation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The structure and movement of dislocations in UO2 is of
significance both in determining the bulk properties of nuclear
fuels, for example the creep rate [1–9], and also the clustering
and mobility of defects on an atomic scale [10–13]. The
influence of dislocation behaviour on nuclear fuel performance
has also been recognized and explicitly incorporated into
recent fuel performance codes [14, 15]. The behaviour of
a dislocation is strongly linked with the behaviour of the
dislocation core, which requires an understanding of the
atomic scale interactions. Despite the growing application of
modelling to better understand nuclear materials, there has
been little work done on modelling dislocations in nuclear
fuels. Conversely, the atomic scale modelling of effects such as
radiation damage [16–22] or fission product behaviour [23–27]
are well established. Therefore simple, robust atomic scale
models of dislocations are of current interest.

We present here atomic scale simulations of a range
of dislocations in UO2 consisting of both edge and screw
dislocations in a variety of orientations. We use both static
energy minimization and dynamic simulation techniques to
calculate the distribution of strain around the dislocation. We
also calculate the line energy for each type of dislocation
showing explicitly the contributions from the core region

and the long range strain field, which agrees closely with
established models of the extended dislocation structure from
elastic theory. We calculate the energy of the Peierls
barriers [28, 29], which is a measure of the ease of moving the
dislocation core structure through the crystal via the process
of slip, we present these results for the three different slip
systems.

The intent here is to show that atomic scale simulations
of dislocations in UO2 are, with carefully constructed initial
configurations, technically feasible using current simulation
techniques. We also assess the stability and relative energies
of four specific types of dislocation structure. Finally we
comment upon the use of these techniques to examine the
interaction of dislocations with isolated atomic defects.

2. Method

Crucial to any discussion of dislocations is the line energy,
defined as the energy per unit length required to insert a
dislocation into an otherwise pristine crystal lattice [30, 31].
Equally important is the displacement field, which is a vector
field that relates each point in the perfect crystal to another
point in the defective crystal. Both of these quantities are
well defined in the macroscopic elastic limit, but can only
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be calculated fully using atomic scale models to represent the
dislocation core region. Using the line energy it is possible
to assess the stability of the various types of dislocation
configurations.

There are several ways of calculating the line energy of
a given dislocation. For a theoretical approach, it is normal
to consider general solutions of the displacement field that
take into account the anisotropy of the crystal system. There
are several numerical methods which relate the displacement
field to the energy per atom via direct solution of the elastic
constants matrix (see for example the work of Stroh [32–34] or
Barnett and Swanger [35, 36]).

As we consider only straight, pure edge or screw
dislocations with Burgers vectors along high symmetry
directions within the crystal we choose an analytical approach
where we calculate the line energy and displacement field from
the elastic constants matrix. The line energy, E(r), is given as
an energy of the atoms within a cylinder of radius r ,

E(r) = Ec + K b2

4π
ln

(
r

rc

)
(1)

where the Burgers vector of the dislocation is b, and
expressions for K are derived below. Ec and rc represent a
partitioning of the dislocation into a core region (of radius
rc and energy Ec) that assumed not to behave according
to the predictions of elastic theory. We also note that if
explicit calculations of the displacements were not required
then there are several articles that list modified Poisson’s ratios
in different crystal systems for common [37] and general
rotations [38–40].

2.1. Pair potential model

Our calculations of dislocation line energies are based on
static and dynamic atomic scale simulations employing a
simple effective pair potential model for ion–ion interactions.
The static simulations are used to calculate line energies and
equilibrium strain fields. The dynamic simulations are used to
demonstrate the thermal stability of the dislocations and their
effectiveness in examining non-equilibrium processes such as
slip and atomic scale migration.

There are many parameter sets that have been suggested
for use in modelling UO2 [41–43], here we employ a single
potential set [43] that closely replicates the elastic properties
of bulk UO2. These will be important in correctly predicting
the large scale behaviour of the dislocation in the elastic limit.
Reviews of this potential and a comparison with other proposed
sets have been published [44–46].

2.2. Construction of the dislocation configurations

The simulations are based upon dislocations that have been
previously suggested as responsible for slip in UO2 [47–49].
Specifically we considered slip in the 〈110〉 directions along
{100}, {110} and {111} slip planes; we also consider a screw
dislocation which we assume lies along the 〈110〉 directions
such that the Burgers vector is minimized along a close packed
plane. We show in table 1 the four different dislocation
geometries along with the specific crystallographic planes and
directions used in the construction of the simulation cells.

Table 1. Table showing the proposed slip systems and Burgers
vectors considered here as well as the specific vectors used here. The
line direction of the dislocation is taken to be along the z-axis and the
Burgers vector is taken to along the y-axis (pure edge) and along the
z-axis (pure screw).

Label Type
Slip
planes

Slip
directions Plane

Burgers
vector

Line
direction

(a) Edge {100} 〈110〉 (001) 1
2 [110] [1̄10]

(b) Edge {110} 〈110〉 (1̄10) 1
2 [110] [001]

(c) Edge {111} 〈110〉 (1̄11) 1
2 [110] [11̄2]

(d) Screw {110} 〈110〉 — 1
2 [110] [110]

2.3. Initial atomic configuration

The calculation of the initial atomic configuration is
complicated because the cell geometries (table 1) differ from
the cubic case and therefore the line energies will (in the
anisotropic case) depend not only upon the Burgers vector
(which is the same in all the examples considered here) but
also its alignment to the cubic axis of the UO2 unit cell. This is
a consequence of the anisotropic nature of the elastic constants
matrix {c}, for the isotropic case (i.e. when c44 = 2(c11 − c12),
where ci j are elements of the elastic constants matrix), there
are more compact expressions that may be used [30].

We calculate the displacement and shear modulus K
(equation (1)) via the following method.

(a) Calculation of the elements of the elastic constants matrix
ci j from numerical solution of the tensor linking the
second derivative of energy with respect to the degrees of
freedom of the crystal. The elastic constant matrix (and
therefore values of K ), are specific to the pair potentials
used.

(b) Rotation of the elastic constants matrix, {c} such that the
new x , y and z components of the matrix point along
the new cell axis in the sense that the Burgers vector lies
along the y-axis (edge) or z-axis (screw) and the line of
the dislocation points along the z-axis.

(c) There is no net strain parallel to the line of the dislocation,
therefore we convert the elastic constants matrix to a
reduced form {c′} using the equation,

c′
i j = ci j − c3 j c3i

c33
. (2)

(d) Several solutions exist to the general problem of
calculating the displacement field [50–55]. We have
employed the method advanced by Eshelby [50] and
Foreman [51] where the line of the dislocation is taken
along the z-axis and the solution proceeds via three
simultaneous partial differential equations which are
solved via complex variable analysis. In the appendix
we quote the results obtained for the case of a pure edge
dislocation and of a screw dislocation where the Burgers
vector b is taken to lie along the y-axis (edge) or z-
axis (screw) and we use the reduced elastic constants
matrix {c′}.
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For comparison with the elastic theory the shear modulus K
from equation (1) is given from the elastic constants matrix by,

K = (c′
11 − c′

12)

[
c′

66(c
′
11 − c′

12)

(c′
11 + c′

12 + 2c′
66)c

′
11

]
(3)

for the case of an edge dislocation and,

K = (c′
44c′

55 − c′2
45)

1
2 (4)

for a screw dislocation.

2.4. Simulation parameters

Having constructed the various initial defect configurations we
now examine their properties using both static and molecular
dynamics simulations. For the static simulations we used the
code GULP version 3.4 [56–58], here the cell was constrained
to be one-dimensional with the edges of the cell frozen in their
initial configurations. For the molecular dynamics simulations
we used the code DLPOLY [59, 60], with a vacuum gap of 1.5 nm
separating the x and y directions of the cell, and the z-axis
(along the dislocation line) was periodic. We are interested in
the behaviour of the central dislocation region, to minimize any
effect due to the vacuum gap or the interface between frozen
atoms and relaxed atoms (although at long range these should
be very similar) we chose large supercell sizes of ∼30 nm in
the x- and y-directions and 4 nm in the z-direction, giving a
total of around 300 000 atoms.

Each cell was equilibrated from its starting unrelaxed
configuration at 300 K for a total of 5000 time steps (5 ps)
to allow the core region of the dislocation to relax. The cell
was then heated to 1200 K for another 5000 time steps to
assess whether the dislocation configurations were thermally
stable (at least on picosecond timescales), all those considered
here remained intact. Following this, the cell was cooled
to 10 K and the energy of the cell was minimized using a
conjugate gradient procedure implemented within the DLPOLY

code. A second reference cell that did not contain a dislocation,
but otherwise contained the same number of ions was also
simulated under the same conditions in order to provide a
reference cell for calculating the line energies, though as
discussed in section 3.1, this can be replaced with a calculation
of the average lattice energy per formula unit. Molecular
dynamics calculations of the slip were initiated from the end
points of the 300 K simulations.

3. Results

Results are presented for each of the four dislocation
geometries, examining the line energies, the calculated strain
fields around the dislocations and for the edge dislocation cores
the Peierls energy barrier.

3.1. Line energies of the dislocations

The line energy of a dislocation (equation (1)) increases
logarithmically with the increasing radius of the region
considered. To calculate the line energies from these

Figure 1. Plot of the line energies calculated from the simulations
(solid lines) and compared with predicted values from elastic theory
(equation (1)) shown as dotted lines for the four different cells.

simulations, we consider the total potential energy of a region
of atoms within some cylinder whose central line coincides
with the line of the dislocation core. The radius of this cylinder
is effectively r in equation (1).

The potential energy contained within this cylinder
increases (to first order) as r 2, and so we need to subtract away
the contributions due to the perfect (i.e. defect free) crystal to
obtain the increase in potential energy that can be ascribed to
the introduction of the dislocation. To do this we can subtract
away the energy due to a similar sized cylinder of atoms in
a cell without the dislocation or more succinctly calculate the
average potential energy per U4+ and O2− ion in a pure cell
and subtract away this energy multiplied by the number of ions
within the cylinder. The latter case assumes that

E(r) = Ed(r) − Ep(r) � Ed −
∑

j=U,O

N j 〈E j〉 (5)

where E(r) is the energy due to the introduction of the
dislocation measured at a distance r from the core, Ed and Ep

are the energies contained within the cylinder with and without
the dislocation respectively and N j is the number of ions of
type j each with average potential energy 〈E j〉. We found that
this approximation was well obeyed, serving as confirmation
that our method of calculating the potential energy contained
within the cylinders was accurate.

Figures 1(a)–(d) shows the line energy of a dislocation
contained within a cylinder of radius r for the four different
dislocation geometries considered here. We have fitted the core
energy Ec from equation (1) to the simulation data defining
(arbitrarily) the core radius rc to be 3 nm and using the value
of the shear modulus K calculated from equation (1) for each
specific dislocation geometry. Table 2 shows the values of
these parameters obtained from a fit to the data.

The agreement between simulations and the predictions
of equation (1) for large values of r are excellent, particularly
as the gradient of these lines are not fitted but are determined
entirely by the values from equation (1). At low values of r
there is significant deviation from linear elastic theory as we
would expect in the core region.
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Figure 2. Typical strain field around dislocations with red colours showing tensile regions and blue showing compressive. Subplots show for
a screw dislocation the (a) hydrostatic, i.e. the trace of the strain matrix, components and (b) the ε11 component, and similarly for the edge
dislocation the (c) hydrostatic and (d) ε11 component.

Table 2. Table showing the fitted parameter of the core energy Ec,
the core radius is fixed at 3 nm, equations are given in the text. The
shear modulus term K calculated from equation (1) is also reported.

Cell Ec (10−9 J m−1) rc (nm) K (GPa)

{100} 〈110〉 3.51 3 95.6
{110} 〈110〉 4.19 3 90.9
{111} 〈110〉 3.75 3 85.1
Screw 〈110〉 3.00 3 69.8

The absolute values of line energies from figure 1
suggest that the most stable edge dislocation structures are the
{100}〈110〉 system closely followed by the {111}〈110〉 system
which has an energy ∼0.25 eV Å

−1
greater. This agrees

well with the prediction [49] that of the dominance of the
{100}〈110〉 slip system in UO2 with the {111}〈110〉 system
existing as a secondary system.

3.2. Strain fields around the dislocation cores

We can also examine the strain field around the dislocation
cores. To do this for each atom position in the simulation
we take the positions of the surrounding U4+ ions from

the energy minimized structure and calculate, using a least
squares method, the matrix that best represents the linear
transformation from the perfect crystal to the distorted cell with
the dislocation. This assumes that the transformation is linear
(i.e. that the nearest neighbourhood environment experience by
each atom differs only from the perfect case by shear, stretch
and rotational components). The elements of this matrix
represent the strain components at each point surrounding the
dislocation and the trace of this tensor then represents the
hydrostatic strain.

Figure 2 illustrates four contour plots of the calculated
strain for a (a) 〈110〉 screw dislocation showing the hydrostatic
strain, (b) the same screw dislocation showing only the
ε11 component of strain, (c) a {100}〈110〉 edge dislocation
showing the hydrostatic strain, and (d) a {100}〈110〉 edge
dislocation showing the ε11 component only. The strains
surrounding the screw dislocation are small, only exceeding
1% for atoms very close to the dislocation core, where the
concept of a linear relationship between perfect and distorted
lattice has broken down. The hydrostatic strain around the
screw dislocation is practically zero except for the three atoms
immediately surrounding the core, this is in agreement with
expectations [30, 31]. The strains surrounding the edge
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dislocations are larger, and indeed the line energy of an edge
dislocation is larger to accommodate this, and longer range.
We also note the pair potential simulations reproduce the
expected distribution of the components of the strain field ([30,
page 77]) as well as the absolute hydrostatic strain.

The overall magnitude of the strains surrounding the
dislocation cores is also interesting. We see firstly that
the screw dislocations have much smaller hydrostatic strains
surrounding them, whereas for the case of the edge dislocations
the strain fields are much greater in magnitude, in a continuum
model of course the screw dislocations have zero hydrostatic
strain although the core relaxation here changes that slightly in
our atomic scale models. The compressive and tensile regions
will provide clustering points for atomic scale defects that have
either large positive defect volumes (for example xenon atoms)
or negative defect volumes (for example a neutral vacancy
cluster); these may have important implications both for the
mobility of dislocations (for example the formation of Cottrell
atmospheres surrounding the cores [61]) or for the nucleation
of bubbles of fission gases.

The close comparison between the predictions of elastic
theory and those of the atomic scale simulations in the final
displacements of the energy minimized dislocation structure.
Far from the core region (beyond approximated 5 nm) the
displacements are in good agreement: the difference between
the original elastic theory positions and the atomic scale
relaxed structure is less than 10 pm. Interestingly, however
the displacements never quite go to zero, indicating that even
in our large cells there is a small residual strain field cause by
a core relaxation volume at the centre of the cell. Close to the
core region there are significant differences between the initial
configuration and the final relaxed structure.

3.3. Peierls barrier for edge dislocation slip

To quantify how easy it is to move a given dislocation we
calculate the Peierls barrier [28, 29] for each of the three edge
dislocation slip systems presented here. This is defined as
the minimum energy barrier the atomic configuration must
overcome to produce a second atomic configuration that is
identical apart from a displacement of the dislocation core by
a single lattice spacing. Due to the number of calculations
required we used smaller cell sizes in these simulations. The
cells were constructed as before but with linear dimensions of
only 5 nm, with the periodic repeat unit (along the z-direction)
around 2 nm depending upon the direction of the dislocation.
These smaller cells considerably reduced the computational
cost of the calculations at the expense of increasing the
interaction with the fixed atoms at the boundary of the cell.
However, in this case, the important quantity is the relative
change in cell energy as the dislocation undergoes slip (and the
interaction with the boundary region is approximately constant
during this process). The transition energies calculated are
therefore a good estimate of the values in large cells.

To calculate the Peierls barrier we implement two separate
calculations, first using molecular dynamics to identify the
reaction pathway and then a nudged elastic band calculation
to calculate a value for the Peierls barrier. The molecular

dynamics simulations use the dislocation configurations at
300 K for each of the three slip systems. A constant shear
stress is applied to each of these cells such that the cell slowly
distorts along a direction parallel to the Burgers vector, in
the simulation the (frozen) atoms at the edges of the cell
along the y-axis are translated at a speed of 1 m s−1 over
the course of the simulation. This gives strain rates that
are far higher than observed experimentally, but here we are
interested in the response of a single dislocation over a time
period of picoseconds. The application of this stress causes the
dislocation to migrate along the 〈110〉 direction. Provided that
the shear rate of the crystal is sufficiently slow, the dislocation
will move in a series of single hops. Too rapid a shear rate and
the dislocations move several lattice spacings in a single hop.
Analysis of the atomic trajectories yields information about the
intermediate state that occur between the hops.

Having induced slip processes for each of the dislocation
geometries, we also now calculate a value for the Peierls
barrier using a nudged elastic band calculation [62]. The initial
and final states of this calculation require careful treatment.
Although the starting configuration in each case contains
the dislocation displaced by ± 1

4 〈110〉, the relaxation process
was complex. The oxygen ions close to the dislocation
core displayed a number of possible sites that were local
energy minimum but not minima for the dislocation at a given
position. In the molecular dynamics simulations we saw
oxygen ions moving between all of these sites (the difference
in energy was small, less than 0.1 eV) however we note that
energy minimization of the molecular dynamics simulations
does not always result in the lowest energy configuration. We
examined several of these different configurations and chose
ones that were the lowest in energy and also could be linked
together to form a continuous migration process.

The transition pathway we identify using the examples
from the molecular dynamics configurations. This is necessary
as for a given migration, there are several ways of linking the
two configurations by cleaving different set of bonds. We show
an example in figure 3 where it is possible to link the initial
and final states either by moving O2− ions past each other or
by cleaving a U–O bond (figure 3). In the first case the oxygen
ions highlighted in the figure swap places; in the second case
they do not. The success of the transition state search requires
the correct pathway be chosen between the two.

Calculations of the minimum energy pathway use a
nudged elastic band with 11 images equally spaced along the
pathway. The initial set of images were constructed from
a linear interpolation between initial and final states. We
evaluated the energy and derivatives on each ion using the
code GULP. To reduce the computational requirements, atoms
a distance greater than 2.5 nm from the dislocation cores were
held fixed (at their initial interpolated positions); atoms within
this radius were moved according to the forces acting upon
them due to the interatomic forces and the harmonic forces
acting between adjacent images. The nudged elastic band
algorithm was run until the absolute value of the out-of-plane
force was less than the force tolerance of 5 × 10−4.

Figure 4 shows the calculated minimum energy pathways
for slip on the three proposed dislocation geometries. The

5



J. Phys.: Condens. Matter 22 (2010) 175004 D C Parfitt et al

Figure 3. Possible pathways for slip in UO2 on the {100}〈110〉
system. Oxygen ions are plotted as smaller red spheres, uranium ions
as larger green spheres. Small blue spheres represent the position of
the highlighted O–U–O triplet as the dislocation moves up the page.
For slip to occur the oxygen ion labelled (a) must move to the
highlighted position either directly (path indicated by the curved
yellow line) or by exchanging places with ion (b) (path indicated by
the straight blue lines). For the {100}〈110〉 slip system the calculated
lowest energy pathway occurred via the direct (yellow) pathway.

lowest energy barrier occurs for the {100}〈110〉 system
(2.5 eV nm−1), with the {110}〈110〉 and {111}〈110〉 having
higher barriers at 4.6 eV nm−1 and 3.1 eV nm−1, respectively.
The calculated values, showing the lowest Peierls barrier on
the {100} slip plane, is in agreement with experiment [49]
for the case of stoichiometric UO2. Note also there is a
small (<0.1 eV nm−1) spread in the energies of the final
configuration, this is due to the dislocation structure itself
coming slightly closer to the edge of the simulation cell and
therefore there being a slight change in the way the strain field
is terminated.

4. Conclusions

The aims of this paper have been to describe the methods
by which atomic scale simulations of dislocations can be
performed in UO2. We also examined the line energies and
strain field surrounding four possible dislocation structures.
Finally, we calculated the Peierls barrier for three possible slip
systems.

The line energies and strain field surrounding the
dislocations have been shown at large distances to be self-
consistent with those expected from linear elastic theory. This
gives confidence to the predictions made on the atomic scale
behaviour of the core. It also means that modelling dislocations
using a continuum model for distances further than around
3 nm appears to be compatible with atomic scale simulations.
Recent developments in accurately calculating the electronic
structure of UO2 [23] using density functional theory may
mean also that first principles calculations of the core structure
(surrounded by an appropriate larger scale model) may also be
permissible.

Figure 4. Migration barriers for the three different edge dislocation
geometries, the energy is relative to the line energy at the equilibrium
position. Crosses represent image positions across the Peierls barrier,
lines are plotted as a guide to the eye.

The Peierls barriers for slip along the {100}, {110} and
{111} planes are in agreement with experimental evidence
insofar as the lowest energy slip system is predicted to be
the {100} system for stoichiometric UO2. It is of interest
to consider what influence of oxygen interstitials, oxygen
vacancies and the possibility of U5+ formation may have upon
the calculated energy barriers. The atomic scale description
of these would of course require pair potentials (or electronic
structure calculations) that could accurately describe each of
these charged defects. In particular we note the easing of
slip in the transition to hyper-stoichiometric UO2+x and the
switching between {100} and {110} [47–49]. A prediction of
this behaviour would provide greater confidence in the values
and techniques presented here.
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Appendix

Pure edge dislocation

Following Hirth and Lothe [30], we quote the displacement
(ux, uy, 0), applied to the crystal at a point (x, y). There are
two distinct solutions to the complex variable problem, we first
take the case that 2c′

44 + c′
12 − c′

11 > 0.

ux = − by

4πλc′
11 sin 2φ

[
(c′

11 − c′
12) cos φ ln(qt)

− (c′
11 + c′

12) sin φ tan−1

(
x2 sin 2φ

λ2 y2 − x2 cos 2φ

)]
(6)
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uy = − by

4π

[
tan−1

(
2xyλ sin φ

x2 − λ2 y2

)
− c′2

11 − c′2
12

2c′
11c′

66 sin 2φ
ln

(q

t

)]

(7)

where,

q2 = x2 + 2xyλ cos φ + y2λ2 (8)

t2 = x2 − 2xyλ cos φ + y2λ2 (9)

λ =
(

c′
11

c′
22

) 1
4

. (10)

And,

cos 2φ = c′2
12 + 2c′

12c′
66 − c′2

11

2c′
11c′

66

. (11)

For the case 2c′
66 + c′

12 − c′
11 < 0 the above equations

produce an imaginary angle φ and we are required to use
the secondary set of roots. In this case the equations for the
displacement field are,

ux = − by

4πλc′
11 sinh 2δ

[
(c′

11 − c′
12) sinh δ ln(qt)

+ 1
2 (c′

11 + c′
12) cosh δ

× ln

(
λ2 y2 + x2

λ2 y2 + x2(cosh 2δ + sinh 2δ)

)]
(12)

uy = − by

4π

[
tan−1

(
2xyλ cosh δ

x2 − λ2 y2

)

− c′2
11 − c′2

12

2c′
11c′

66 sinh 2δ
tan−1

(
2xyλ sinh δ

x2 + λ2 y2

)]
(13)

where φ = π/2 − iδ, and δ is real and given by,

cosh 2δ = c′2
11 − c′2

12 − 2c′
12c′

66

2c′
11c′

66

. (14)

The product (qt) is, however, still real as q and t are redefined
to be complex conjugates of each other,

q2 = x2 + y2λ2 + i2xyλ sinh δ (15)

t2 = x2 + y2λ2 − i2xyλ sinh δ. (16)

The value of λ (equation (10)) is unchanged.

Pure screw dislocation

Again following Hirth and Lothe [30], the displacements uz are
given in terms of the reduced elastic constants as,

uz = − b

2π
tan−1 (c′

44c′
55 − c′2

45)
1/2y

c′
44x − c′

45y
. (17)
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